Package 'WhiteStripe'

Title: White Matter Normalization for Magnetic Resonance Images
Description: Shinohara (2014) <doi:10.1016/j.nicl.2014.08.008> introduced 'WhiteStripe', an intensity-based normalization of T1 and T2 images, where normal appearing white matter performs well, but requires segmentation. This method performs white matter mean and standard deviation estimates on data that has been rigidly-registered to the 'MNI' template and uses histogram-based methods.
Authors: R. Taki Shinohara [aut], John Muschelli [aut, cre]
Maintainer: John Muschelli <[email protected]>
License: GPL-3
Version: 2.4.3
Built: 2025-01-04 04:10:54 UTC
Source: https://github.com/muschellij2/whitestripe

Help Index


Download T1 and T2 data

Description

Download T1 and T2 data for Examples

Usage

download_img_data(lib.loc = NULL)

Arguments

lib.loc

a character vector with path names of R libraries. Passed to img_data

Value

Logical indicator if the files were downloaded.


Gets nth derivative of smoothed histogram

Description

This function outputs the nth derivative of a histogram smooth.

Usage

get.deriv.smooth.hist(x, coefs, knots, deg = 4, deriv.deg = 1)

Arguments

x

values from smooth_hist

coefs

Coefficients from GAM from smooth_hist

knots

Number of knots fit for GAM

deg

Degree of polynomials

deriv.deg

The degree of the derivative.

Value

Derivative of smoothed histogram

Examples

data(smoothed_histogram)
dy<-get.deriv.smooth.hist(xvals, 
coefs=s.hist$coefs,
knots=s.hist$knots,
deg=s.hist$deg,
deriv.deg=1)

Get First Peak

Description

This function grabs the first peak or shoulder.

Usage

get.first.mode(x, y, rare.prop = 1/5, verbose = TRUE, remove.tail = TRUE, ...)

Arguments

x

values of midpoints from hist

y

values of counts from hist

rare.prop

Proportion used to remove rare intensity tail

verbose

print diagnostic output

remove.tail

Remove rare intensity tail

...

arguments to be passed to smooth_hist

Value

Value of x that is the first peak

Examples

data(t1.voi.hist)
system.time({
y = t1.voi.hist$counts
x = t1.voi.hist$mids
x = x[!is.na(y)];
y = y[!is.na(y)]
# 20 used for speed of example
nawm_peak = get.first.mode(x, y, k=20)
plot(t1.voi.hist, border="red")
abline(v=nawm_peak)
})

Grab largest peak

Description

This function grabs the largest peak of the histogram

Usage

get.largest.mode(x, y, verbose = TRUE, ...)

Arguments

x

values of midpoints from hist

y

values of counts from hist

verbose

print diagnostic output

...

arguments to be passed to smooth_hist

Value

Value of x that is the largest peak

Examples

data(t2.voi.hist)
system.time({
y = t2.voi.hist$counts
x = t2.voi.hist$mids
x = x[!is.na(y)];
y = y[!is.na(y)]
# 30 used for speed of example
nawm_peak = get.largest.mode(x, y, k=30)
plot(t2.voi.hist, border="red")
abline(v=nawm_peak)
})

Get Last Peak

Description

This function grabs the last peak or shoulder.

Usage

get.last.mode(x, y, rare.prop = 1/5, verbose = TRUE, remove.tail = TRUE, ...)

Arguments

x

values of midpoints from hist

y

values of counts from hist

rare.prop

Proportion used to remove rare intensity tail

verbose

print diagnostic output

remove.tail

Remove rare intensity tail

...

arguments to be passed to smooth_hist

Value

Value of x that is the last peak

Examples

data(t1.voi.hist)
system.time({
y = t1.voi.hist$counts
x = t1.voi.hist$mids
x = x[!is.na(y)];
y = y[!is.na(y)]
# 20 used for speed of example
nawm_peak = get.last.mode(x, y, k=20)
plot(t1.voi.hist, border="red")
abline(v=nawm_peak)
})

Make Image VOI

Description

Creates a VOI of Image for the specified slices

Usage

make_img_voi(img, slices = 80:120, na.rm = TRUE, ...)

Arguments

img

Image (T1 usually or T2). Array or object of class nifti

slices

Slices to take for the image voi

na.rm

Remove NAs from mean. This is for double checking

...

Arguments passed from other methods (not used)

Value

VOI of image.


Smoothed histogram of image

Description

Smoothed histogram of image

Usage

s.hist

Format

A GAM from mgcv for x and y from histograms

Examples

## Not run:  
data(t2.voi.hist)
y = t2.voi.hist$counts
x = t2.voi.hist$mids
x = x[!is.na(y)];
y = y[!is.na(y)]
# 70 used for speed of example
s.hist = smooth_hist(x, y, k=70)

## End(Not run)

Histogram smoothing for whitestripe

Description

Uses a generalized additive model (GAM) to smooth a histogram for whitestripe

Usage

smooth_hist(
  x,
  y,
  deg = 4,
  k = floor(min(250, length(x)/2)),
  method = "REML",
  ...
)

Arguments

x

values of midpoints from hist

y

values of counts from hist

deg

degree of polynomials used

k

Number of knots

method

Method for smoothing for GAM

...

Arguments passed to gam

Value

List of objects: x and y coordinates of histogram, coefficients from GAM, fitted values from GAM, the GAM model, the knots fitted, and degrees of polynomials

See Also

gam

Examples

data(t2.voi.hist)
y = t2.voi.hist$counts
x = t2.voi.hist$mids
x = x[!is.na(y)];
y = y[!is.na(y)]
# 30 used for speed of example
s.hist = smooth_hist(x, y, k=30)
plot(t2.voi.hist, border="red")
lines(s.hist)

Histogram of VOI of T1 template image

Description

Histogram of VOI of T1 template image

Usage

t1.voi.hist

Format

A volume of interest histogram from a T1 image for smoothing

Examples

lib.loc = tempdir()
if (download_img_data(lib.loc = lib.loc)){
  t1 = oro.nifti::readNIfTI(system.file("T1Strip.nii.gz", package="WhiteStripe",
                             lib.loc = lib.loc))
  t1.voi = make_img_voi(t1)
  any(is.na(t1.voi))
  # FALSE
  t1.voi.hist = hist(t1.voi,
                     breaks=2000,
                     plot=FALSE)
}

Histogram of VOI of T2 template image

Description

Histogram of VOI of T2 template image

Usage

t2.voi.hist

Format

A histogram volume of interest from a T2 image for smoothing

Examples

## Not run: 
lib.loc = tempdir() 
if (download_img_data(lib.loc = lib.loc)){
t2 = readNIfTI(system.file("T2Strip.nii.gz", package="WhiteStripe",
lib.loc = lib.loc))
t2.voi = make_img_voi(t2)
any(is.na(t2.voi))
# FALSE 
t2.voi.hist = hist(t2.voi, 
breaks=2000, 
plot=FALSE)  
#save(t2.voi.hist, file="data/t2.voi.hist.rda", compress = TRUE,
# compression_level=9) 
}

## End(Not run)

Performs White Stripe of T1 or T2 Images

Description

Returns the mean/sd of the whitestripe and indices for them on the image

Usage

whitestripe(
  img,
  type = c("T1", "T2", "FA", "MD", "first", "last", "largest"),
  breaks = 2000,
  whitestripe.width = 0.05,
  whitestripe.width.l = whitestripe.width,
  whitestripe.width.u = whitestripe.width,
  arr.ind = FALSE,
  verbose = TRUE,
  stripped = FALSE,
  slices = NULL,
  ...
)

Arguments

img

Image (T1, T2, FA, or MD). Array or object of class nifti

type

T1, T2, FA, or MD image whitestripe

breaks

Number of breaks passed to hist

whitestripe.width

Radius of the white stripe

whitestripe.width.l

Lower Radius of the white stripe

whitestripe.width.u

Upper Radius of the white stripe

arr.ind

Whether indices should be array notation or not, passed to which

verbose

Print diagnostic information

stripped

Applying to skull-stripped image. NOTE: This does NOT do a subset of slices, as make_img_voi.

slices

slices to use for make_img_voi if only a subset to estimate the distribution.

...

Arguments to be passed to get.last.mode

Details

This function takes in an image and computes a window of the distribution called the white stripe. If you wish to pass in values you have subset, such as single from a skull-stripped image, you can pass in img and set the class to img_voi (class(img) = "img_voi") and this will not rerun make_img_voi.

Value

List of indices of whitestripe, last mode of histogram, array/nifti of 0/1 corresponding to the mask, mean of whitestripe, standard deviation of whitestripe

Examples

## Not run: 
library(WhiteStripe)
lib.loc = tempdir()
if (WhiteStripe::download_img_data(lib.loc = lib.loc)){
library(oro.nifti)
set.seed(1)
t1 = readNIfTI(system.file("T1Strip.nii.gz", package="WhiteStripe",
lib.loc = lib.loc))
t1.ind = whitestripe(t1, "T1")
set.seed(2)
t1_2 = readNIfTI(system.file("T1Strip.nii.gz", package="WhiteStripe",
lib.loc = lib.loc))
t1_2.ind = whitestripe(t1_2, "T1") 
t1.mask = whitestripe_ind_to_mask(t1, t1.ind$whitestripe.ind)
t1.mask[t1.mask == 0] = NA
orthographic(t1, t1.mask, col.y="red")
t2 = readNIfTI(system.file("T2Strip.nii.gz", package="WhiteStripe",
lib.loc = lib.loc))
t2.ind = whitestripe(t2, "T2")
t2.mask = whitestripe_ind_to_mask(t2, t2.ind$whitestripe.ind)
t2.mask[t2.mask == 0] = NA
orthographic(t2, t2.mask, col.y="red")
}

## End(Not run)

Hybrid WhiteStripe

Description

Uses t1 and t2 WhiteStripe to get an intersection of the two masks for a hybrid approach

Usage

whitestripe_hybrid(t1, t2, ...)

Arguments

t1

T1 image, array or class nifti

t2

T2 image, array or class nifti

...

arguments passed to whitestripe

Value

List of indices of overlap mask, and overlap of class array or nifti

See Also

whitestripe

Examples

## Not run: 
lib.loc = tempdir()
if (download_img_data(lib.loc = lib.loc)){
t1 = readNIfTI(system.file("T1Strip.nii.gz", package="WhiteStripe", 
lib.loc = lib.loc))
t2 = readNIfTI(system.file("T2Strip.nii.gz", package="WhiteStripe",
lib.loc = lib.loc))
ind = whitestripe_hybrid(t1, t2)
}

## End(Not run)

WhiteStripe Indices to Mask

Description

Uses WhiteStripe indices to create image mask

Usage

whitestripe_ind_to_mask(img, indices, writeimg = FALSE, ...)

Arguments

img

Array or class nifti that is corresponds to dimensions of the images the indices were generated from

indices

indices from whitestripe

writeimg

logical to write image or not

...

arguments to passed to writeNIfTI for writing image

Value

Class of array or nifti depending on img input

See Also

whitestripe, whitestripe_hybrid

Examples

lib.loc = tempdir()
if (download_img_data(lib.loc = lib.loc)){
  t1 = oro.nifti::readNIfTI(system.file("T1Strip.nii.gz",
                                        package="WhiteStripe",
                                        lib.loc = lib.loc))
  t2 = oro.nifti::readNIfTI(system.file("T2Strip.nii.gz",
                                        package="WhiteStripe",
                                        lib.loc = lib.loc))
  ind = whitestripe_hybrid(t1, t2)
  mask = whitestripe_ind_to_mask(t1, ind$whitestripe.ind)
  oro.nifti::orthographic(mask)
}

Normalize Image using white stripe

Description

Taking the indices from white stripe to normalize the intensity values of the brain

Usage

whitestripe_norm(img, indices, ...)

Arguments

img

Array or object of class nifti

indices

Indices of white stripe from whitestripe. Can also be a mask (indices where mask > 0 are used.)

...

arguments to be passed to mean and sd

Value

Object of same class as img, but normalized


Return Filenames of T1 and T2 data

Description

Return filenames T1 and T2 data for example and vignettes

Usage

ws_img_data(lib.loc = NULL, warn = TRUE)

Arguments

lib.loc

a character vector with path names of R libraries. Passed to system.file

warn

Should a warning be printed if the images were not there

Value

Vector of filenames


Midpoints from VOI histogram

Description

Midpoints from VOI histogram

Usage

xvals

Format

x values from histogram for VOI